

PAR-003-1162002

Seat No.

M. Sc. (Sem. II) (CBCS) Examination

August / September - 2020

CMT - 2002 : Mathematics

(Complex Analysis)

Faculty Code: 003

Subject Code: 1162002

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Figures on the right indicates marks.
- 1 Answer Any **Seven** questions:

 $2 \times 7 = 14$

- (a) Write the statement of Cauchy's Integral Formula (1ST Version).
- (b) Define bounded variation and rectifiable path.
- (c) Evaluate $\int \frac{1}{z} dz$ where $\gamma(t) = e^{\inf}$ for $n \in \mathbb{N}$ and $t \in [0, 2\pi]$.
- (d) Prove that f = g, if the set $\{z \in G : f(z) = g(z)\}$ has a limit point in G where $f,g:G \to \emptyset$ is an analytic function and G is an open connected subsed of \emptyset .
- (e) Evaluate $f_{|z|=3} \frac{f(z)'}{f(z)} dz$ if $f(z) = \frac{(z^2+1)^2}{(z^2+3z+2)^3}$.
- (f) Write the statement of Taylors's Theorem.
- (g) Define Meromorphic function and also write one example of Meromorphic Function.
- (h) Show that $f: C \to C$ be defined as $f(z) = \sin z$ is not a bounded function.
- (i) Define Pole and find the pole of $f(z) = \frac{e^{2z}}{z(z-1)}$ for $z \in C$ also write the order of each pole.
- (j) Write the statement of Open mapping Theorem.

2 Answer Any Two of the following:

 $7 \times 2 = 14$

- (a) Let G be an open connected subset of C and $f:G \to C$ is an analytic on G with f'(z)=0 for all $z \in G$ then show that G is constant function also show that one cannot drop the condition of connectedness in the above statement.
- (b) Prove that $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathcal{C}$ and $\overline{e^z} = e^{\overline{z}}$ for all $z \in \mathcal{C}$.
- (c) Show that for an analytic function $f: G \to \mathcal{C}$ where G be an open connected subset of \mathcal{C} and $G^* = \{\overline{z}: z \in G\}$ then $f^*: G^* \to \mathcal{C}$ defined by $f^*(z) = \overline{f(\overline{z})}$ for all $z \in G^*$ is analytic on G^* .
- 3 All are Compulsory. Attempt one pair of (a) and (b). $7\times2=14$
 - (a) Prove that the representation of Bilinear Transformation is not unique.
 - (b) Show that every Bilinear Transformation $S \neq I$ has atmost two fixed points and deduce that if S and T are Bilinear Transformation such that $S(z_i) = T(z_i)$, for i = 1, 2, 3 for some distinct $z_1, z_2, z_3 \in \mathcal{C}_{\infty}$ then S = T.

OR

- (a) Prove that if f = 0 then f = 0 or g = 0, provided f and g are analytic function on an open connected set G.
- (b) Prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is any integer, where $\gamma:[0,1] \to C$ be any closed rectifiable curve and $a \notin \{\gamma\}$.
- 4 Answer Any Two questions:

 $7 \times 2 = 14$

(a) Let γ be a closed rectifiable curve in φ then prove that $n(\gamma;a)$ is constant for "a" belonging to component of $G = \varphi - \{\gamma\}$. Also show that $n(\gamma;a) = 0$ for "a" belonging to the unbounded component of G.

- (b) Write the statement of Cauchy Integral Formula for Derivatives (2nd Version) and show that $\int_{\gamma} \frac{1}{\left(z-a\right)^n} dz = 0$ for every integer $n \ge 2$, provided γ is any closed rectifiable curve in (\uparrow) and $a \notin \{\gamma\}$.
- (c) State and prove Liouville's Theorem.
- (d) Write the statement of Identity Theorem and show that there does not exists an analytic function $f: \not \subset \to \not \subset$ such that f(z) = z, for all z such that |z| = 1 and $f(z) = z^2$, for all z such that |z| = 2.
- 5 Answer Any Two of the following questions: 7×2=14
 - (a) State and prove Cauchy's integral formula (1st version).
 - (b) Prove that if $f:G-\{a\}\to \mathbb{C}$ be an analytic function and α is pole of f then there exists $m\in\mathbb{N}$ and an analytic function $g:G\to \mathbb{C}$ such that $f(z)=\frac{g(z)}{(z-a)^m}$ for all $z\in G-\{a\}$.
 - (c) Let A_1 and A_2 be two circles in \mathcal{C}_{∞} and S be a Bilinear Transformation such that $S(A_1) = A_2$ then prove that if z^* and z are symmetric with respect to A_1 then $S(z^*)$ and S(z) are symmetric with respect to A_2 .
 - (d) Write the standard form of Bilinear Transformation and prove that every Bilinear Transformation preserves cross ratio.